
UCRL-JC-124381
PREPRINT

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
 understanding that it will not be cited or reproduced without the permission of the
author.

A Prototype Distributed Object-oriented
Architecture for Image-based Automatic

Laser Alignment

October 15, 1996

Law
re

nce

Liver
m

ore

Nati
onal

Lab
ora

to
ry

Eric A. Stout
Victoria J. Miller Kamm

James M. Spann
Paul J. Van Arsdall

This paper was prepared for submittal to the
2nd Annual Solid-state Lasers for Applications

to Inertial Confinement Fusion Conference
Paris, FRANCE

October 22-25, 1996

A prototype distributed object-oriented architecture
for image-based automatic laser alignment

Eric A. Stout
Victoria J. Miller Kamm

James M. Spann
Paul J. Van Arsdall

Lawrence Livermore National Laboratory
7000 East Avenue, Livermore, California 94550

ABSTRACT
Designing a computer control system for the National Ignition Facility (NIF) is a complex undertaking,
because of both the system’s large size and its distributed nature. The controls team is addressing that
complexity by adopting the object-oriented programming paradigm, designing reusable software
frameworks, and using the Common Object Request Broker Architecture (CORBA) for distribution.

A prototype system for image-based automatic laser alignment has been developed to evaluate and gain
experience with CORBA and OOP in a small distributed system. The prototype is also important in the
evaluation of alignment concepts, image processing techniques, speed and accuracy of automatic alignment
for the NIF, and control hardware for alignment devices. The prototype system has met its initial
objectives, and provides a basis for continued development.

Keywords: object-oriented, CORBA, frameworks, automatic alignment

1. THE NATIONAL IGNITION FACILITY CONTROLS ARCHITECTURE
The computer control system for the National Ignition Facility (NIF) must be designed to meet several
significant challenges. First and foremost, it must manage the size and complexity of the machine: the
NIF will be a 192 beam laser containing approximately 48,000 control points, controlled by several
hundred computers running several hundred thousand lines of software. Furthermore, the control system
must be designed in anticipation of the long lifetime of the facility: over the course of thirty years, every
computer in the system will be replaced at least once, and specific controls and diagnostics will come and
go. The design of the control system should facilitate this evolution.

1.1 The object-oriented paradigm
The use of the object-oriented paradigm is the key to controlling the complexity of the control system.
According to Booch, “By applying object-oriented design, we create software that is resilient to change and
written with economy of expression.”1 The principle of object-oriented design is that a software system
consists of a collection of objects, each with its own set of behaviors, which collaborate to fulfill the
functions of the system. Each object may maintain internal state information which may only be affected
from without by invoking one of its behaviors (or operations). The type of an object is referred to as its
class. Classes which have attributes in common may inherit those attributes from a common “parent”
class.

There are several programming languages which offer these object-oriented features, including C++,
Smalltalk, and Ada95. Ada95 has been chosen for the NIF control system primarily for its reliability.
Barnes says: “It is now clear after many years’ use that Ada is living up to its promise of providing a
language which can reduce the cost of both the initial development of software and its later maintenance.”2

For such a large system to be produced in a timely fashion and to be maintainable over its long lifetime,
Ada95 - an update of the original Ada specification, with the addition of object-oriented features - is an
excellent choice.

1.2 Reusable software frameworks
A framework provides a set of related services which are required throughout a software system. Every
application which requires a particular service can use the same framework, specializing it by inheritance if
necessary but reusing much of the code.

There are a number of such frameworks in the NIF software design for such applications as message
logging, status monitoring, sequence control, and configuration. The Sequence Control framework provides
facilities for creating and executing command sequences, or scripts. Describing complex operations which
may be performed in multiple ways (such as laser alignment) via scripts allows those operations to be
modified without recompiling software. The Configuration framework maintains a hierarchy of the
computer-controlled devices in the NIF, along with initialization information for each device and an
“address” at which that device may be located for control. Reusing these frameworks, rather than
reimplementing them in each application, allows developers to devote their time to implementing the
features unique to their particular domains.

1.3 The Common Object Request Broker Architecture (CORBA)
Adopting the object-oriented approach and using frameworks to enable software reuse are strategies which
mitigate the general problem of software complexity, but the fact that the NIF control system is distributed
among many computers is not addressed by these strategies. Fortunately, tools are available which
facilitate distributed computing. The two major standards applicable to the NIF are the Distributed
Computing Environment (DCE)3 and the Common Object Request Broker Architecture (CORBA)4.
Because CORBA provides direct support for object-oriented programming in a distributed system, it has
been selected for use on the NIF. The source of the CORBA standard is the Object Management Group
(OMG), a consortium of some 500 companies interested in standardizing interactions between distributed
objects.

The fundamental principle of CORBA is that an object on one computer should be able to call an object on
another computer in just the same way as if both objects were on the same machine. A lot goes on behind
the scenes to route the call to the right destination and translate between the different machines’ data
representations, but all the complexities of network programming are hidden from the developer. Simply
put, CORBA acts as a software bus between objects.

1.4 A layered control system

Director

Supervisor

Application
FEP

Service
FEP

Embedded
Controller

Devices

Permissives

Figure 1. NIF architecture layers

Object-oriented programs have been described as “object soup,” because a
representation of the program’s runtime behavior often looks like a
tangle of objects sending messages back and forth to perform the
program’s function. To some extent such a tangle is inevitable, but in a
large system some policy must be imposed which dictates the extent of
the control authority of each application and its associated objects. This
policy is expressed as a set of layers. In the specific case of the NIF
control system, there are seven layers: director, supervisor, application
front end processor (FEP), service FEP, embedded controller,
permissive, and device (see Figure 1), Objects in a given layer may
issue control commands to objects in layers which are both below and
adjacent to their own. Thus, an application FEP may command a
service FEP, but not a supervisor or another application FEP. A service
FEP may command only the devices which are physically attached to it,
and their associated permissives, where present. In this manner, an
orderly flow of control is preserved. A service FEP is an FEP with no
autonomous function: it merely executes commands as they are
received. By contrast, an application FEP has a more complex function,
which, once initiated, the FEP will carry out without further instruction.

2. PROTOTYPE AUTOMATIC ALIGNMENT SYSTEM HARDWARE
The prototype automatic alignment system is a part of the NIF Alignment Concepts Laboratory, which
contains a 1:10 scale model of a NIF beamline (see Figure 2). Controls experiments are conducted in the
transport spatial filter (TSF) area of the beamline. A mirror has been inserted between the TSF and the
cavity spatial filter (CSF) so that experiments may be conducted simultaneously in both areas.

front
end
laser

5 9

Output Sensor
Far Field
Near Field

Target

Cavity Spatial Filter

Transport
Spatial

Filter

centering
alignment

mask

input
gimbals

illuminated fiber
(near-field reference)

shutter

mirror separating
TSF from CSF

Figure 2. The Alignment Concepts Lab model beamline

The prototype system includes an automatic alignment (AA) FEP that receives input from cameras in the
beamline, and an alignment controls (AC) FEP that controls alignment devices. Each FEP consists of a
VMEbus chassis controlled by a SPARC CPU. Additional VME cards provide specific device control and
processing functions. Both FEPs are networked via Ethernet, so that they may communicate with one
another and also with software running on other networked computers. A block diagram of the system is
shown in Figure 3.

Alignment
Control

F E P

Mirrors Binary
Shutter

Automatic
Alignment

F E P

Image
Acquisition

and
Processing
Hardware

CORBA

Processor

Actuator Devices

ProcessorDistribution Device

Figure 3. Booch process diagram showing two Front End Processors and attached devices
collaborating via CORBA.

2.2 Prototype AC FEP hardware
The AC FEP is responsible for control of alignment devices, including motorized mirrors, translation
stages, and shutters. To this end, the prototype AC FEP contains two cards in addition to the CPU: a six-
axis motor indexer produced by Oregon Micro Systems5, and a digital I/O card with 16 binary outputs
produced by Themis Computer6. Currently the AC FEP controls the input gimbals - two motorized mirrors
which steer the injected laser beam - and a shutter which either blocks or passes light from a fiber light
source which provides a near field reference for centering the beam.

Class
Motor

Operations
Goto position

Class
Composite Motor

Operations
Declare setpoint

Goto setpoint

Class
Cross-coupled

Composite Motor
Operations

Point
Center

Class
Binary

Operations
Turn on
Turn off

Class
Actuator

Operations
Get status

Create device

Inher i ts

Contains

Figure 4. Alignment Controls FEP class diagram

2.3 Prototype AA FEP hardware
The AA FEP determines, on the basis of images obtained from CCD cameras, the alignment error at a
given stage of a laser beam chain by comparing the beam location to a previously acquired reference. It then
requests a motor movement from the AC FEP to correct that error. The prototype AA FEP includes cards
which digitize, store, and analyze images. Near field and far field images of the injected beam are provided
by two CCD cameras located in the output sensor area of the model beamline.

2.3.1 MaxVideo 200
The MaxVideo 2007, produced by Datacube Inc., is a configurable base card for an image processing system.
Various modules can be plugged into the card to perform particular image processing functions, depending
on the application, and data can be passed to and from separate cards which support Datacube’s MaxBus
architecture. In the prototype AA FEP, the MaxVideo 200 is configured for simple image acquisition and
staging. An analog input module provides four channels of video input. Analog images are converted to 8-
bit grayscale and stored in a memory module, from which they may be retrieved by the host CPU or read by
another image processing module or card.

2.3.2 APA512+
The actual image analysis in the prototype is performed by Atlantek Microsystems’ APA512+8, an “area
parameter analyzer.” The APA512+ obtains an image from the MaxVideo 200 and converts it from 8-bit
grayscale to 1-bit black and white, based on a user-supplied threshold value: pixels below the threshold are
black and those above the threshold are white. It then scans the image for “blobs:” groups of connected
pixels of the same color. The user may specify size and color criteria which a blob must meet in order to
be reported. The APA512+ reports various statistics pertaining to each blob, including its centroid.
Because the image is processed in black and white, the centroid of a blob is equivalent to its geometric
center.

3. PROTOTYPE AUTOMATIC ALIGNMENT SYSTEM SOFTWARE
The prototype system represents the bottom layers of the layered controls architecture: the AC FEP is a
service FEP, the AA FEP is an application FEP which uses the services provided by the AC FEP, and both
FEPs control some devices.

3.1 AC FEP software
The AC FEP is extremely well suited to the object-oriented approach, because its control functions are all
attached to physical objects whose relationships are easy to describe. The prototype AC FEP was our first
object-oriented Ada95 project. It defines several classes of devices which may be controlled, all of which
inherit from the parent class, “actuator.” Objects of class “motor” are responsible for control of a single
motor. “Composite motor” objects control devices which contain between one and four motors. A “cross-
coupled composite motor” is a special kind of composite motor which contains four motors whose
movements are not independent; cross-coupling is described in more detail below. In the object-oriented
terminology described previously, the class “cross-coupled composite motor” inherits from the class
“composite motor.” “Binary” objects control devices of various kinds which have only two states, e.g.
shutters and light sources. Figure 4 is an object-oriented model of these classes and their relationships.

3.1.1 Cross-coupling
Using a single mounted mirror with two axes of adjustment, a ray may be directed to pass through a single
point of interest past the mirror; its line of travel is determined by the point at which the ray strikes the
mirror and the point of interest through which it passes. Using two such mirrors, however, the ray may be
directed to pass through a selected point in each of two planes of interest, within the constraints of the
mirrors’ range of motion. If only one of the mirrors is moved, the point at which the ray passes through
both planes will change. If both mirrors are moved appropriately, however, one of the two points may be
held fixed while the other is moved. We refer to such interdependence as cross-coupling. The cross-
coupling relationship of a pair of mirrors each with two axes of adjustment may be described by a 4x4
matrix of real numbers. Multiplying this cross-coupling matrix by a column vector denoting the desired (x,
y) adjustment in each of the two planes of interest yields a column vector denoting the required adjustment
of each of the four axes. The most common cross-coupled operations in the laser alignment process are
“pointing” and “centering.” Pointing is the alignment of the laser in the far field, and centering is
alignment in the near field.

3.2 AA FEP software

Alignment
FEP

CCD

Stepping Motor
Driven Mirrors

Automatic
FEP

Alignment loop

Blob analysiscross-coupling

CORBA

Figure 5. An alignment loop

The prototype AA FEP executes pointing and centering
loops on the injected laser beam by acquiring and
processing images using the hardware previously
described, and issuing cross-coupled movement
commands via CORBA to the input gimbals controlled
by the AC FEP based on those images (Figure 5). A
graphical user interface (GUI) is provided so that the
progress of a loop may be observed. Additionally,
because not all of the devices which must be
manipulated to set up each loop are controlled by the
prototype AC FEP, the GUI allows the user to initiate
the loop after the manual setup is completed.

3.2.1 Alignment loops
Laser alignment is performed as a series of alignment
loops. Four kinds of loops have been identified for the
alignment of the NIF: pointing, centering, beam
focusing, and beam rotation. The four differ in their
particulars, but they all have the same basic structure. Pointing and centering loops begin with the
acquisition of a reference location, either by acquiring and processing a reference image or by retrieving a
saved value. The following steps are then repeated until the location of the beam matches the location of
the reference:

AA FEP:
Acquire and process an image of the beam
Calculate the difference between the beam location and the reference location

If the difference is greater than the required tolerance, issue a motor movement correction command
AC FEP:

Translate the correction command to motor steps using the cross-coupling matrix
Move the motors

AA FEP:
Wait for motor movement to be completed

When a loop is completed successfully, the next loop in the series can begin.

The loops performed by the prototype are a centering loop which centers the injected beam on a mirror at
the end of the TSF, and a pointing loop which directs the beam through a pinhole at the focal plane of the
TSF.

4. RESULTS
The purpose of the work on the automatic alignment prototype system to this point has been more to
provide a proof-of-principle than to provide quantitative results. Prior to the construction of the prototype,
however, measurements were taken to determine the performance of CORBA. The prototype itself
demonstrates that automatic alignment can be performed efficiently by matching the location of an
alignment image to the location of a reference image, subject to the stability of the beam. Moreover, the
prototype provides the first demonstration of distributed device control using CORBA and Ada95.

4.1 CORBA performance
We devised several small-scale tests to gain an understanding of how CORBA might perform based on three
different conditions: amount of data being transferred with each call, whether the remote object is located in
a different process on the same machine or on a different machine, and whether the network and CPU are
lightly or heavily loaded. Tests were performed using Orbix 1.3, a CORBA implementation produced by
Iona Technologies9. The results, summarized in Table 1, suggest that CORBA will be able to satisfy the
control data flow requirements of the NIF.

Lightly Loaded Heavily Loaded

Message Size 2 machines Same machine 2 machines Same machine

25 bytes 0.5 ms 0.2 ms 7 ms 0.2 ms
100 bytes 3 ms 1 ms 60 ms 2 ms

10,000 bytes 30 ms 10 ms 200 ms 16 ms

Table 1. CORBA performance test results

Note that messages of the latter two sizes were actually passed twice in each transaction: the receiving
object merely returned the message to the sender. The amounts of data passed in each transaction, therefore,
were 200 bytes and 20,000 bytes. In the “same machine” tests, we observe up to a 100% increase in
transaction time between a lightly loaded machine and a heavily loaded machine. Network loading appears
to be a much more significant factor in determining transaction time, as transactions between two machines
took up to 20 times as long on a heavily loaded network than on a lightly loaded network. A 10 Mb/s
Ethernet network, subject to slowing as a result of collisions when heavily loaded, was used for these tests.
The NIF will use an Asynchronous Transfer Mode (ATM) network, a much faster switching network on
which collisions do not occur.

4.2 Performance of the automatic alignment prototype
Beam pointing and centering have been successfully demonstrated in the Alignment Concepts Laboratory.
Successful completion of an alignment loop is defined as matching the location of the alignment beam to
the location of the reference spot to within 1.0 pixel. The time required to successfully complete each loop
has not been accurately measured: there is an excess delay of between one and two seconds between the
completion of one loop iteration and the start of the next, because the software delay function used to wait
for motor motion to complete provides a minimum increment of one second. One measurement which has

been made, however, is the number of iterations required for successful loop completion. The results for
pointing and centering differed considerably. The centering loop almost invariably completes successfully
in two loop iterations: that is, on the third iteration through the loop, the beam location is within 1.0
pixel of the reference location. The pointing loop is much less reliable, because the far field (pointing)
beam image is not stable in the present laboratory environment: viewed on a monitor, the image of the far
field beam visibly “dances” within a range of about two pixels. With such an unstable beam, an alignment
accuracy requirement of 1.0 pixel is not reasonable, and meeting the requirement on a given loop iteration is
a matter of luck rather than skill. The centering beam image, on the other hand, is quite stable: repeatedly
acquiring the centroid of the centering spot shows a short-term drift on the order of 0.3 pixel or less, and its
motion is not visible on the monitor.

The NIF facility will be much more carefully controlled with regard to vibration, temperature, and air flow
than is the Alignment Concepts Laboratory. We attribute beam movement in the laboratory to these
physical phenomena, and conclude as a result that the alignment concept we have demonstrated will meet
the NIF requirements under the NIF conditions.

5. CONTINUED PROTOTYPE DEVELOPMENT
The prototype automatic alignment system will continue to serve as a testbed both for automatic alignment
in particular and for the NIF computer controls architecture in general. Having successfully executed single
pointing and centering loops, the prototype will be extended considerably in order to demonstrate that an
entire beamline may be aligned using the same concepts and then to show that many beamlines may be so
aligned by a single AA FEP within the NIF time guideline of 30 minutes. As the prototype is extended,
and as prototypes of the of the NIF software frameworks are developed, the use and specialization of the
frameworks by the automatic alignment system will also be demonstrated.

Extending the prototype to control the entire Alignment Concepts Lab beamline primarily requires that the
prototype AC FEP be expanded to control more devices (roughly 20 motors, rather than the current 4) and
that an adequate interface be provided for manual operator control of those devices. The prototype AA FEP
software must be generalized somewhat to allow for the alignment of the additional loops. The extension
to an entire beamline provides an excellent opportunity to incorporate and test prototypes of the
Configuration and Sequence Control frameworks. The Configuration framework will be used to create and
initialize the AC FEP’s device objects at system startup and then to provide the AA FEP with references
(addresses) to those objects. The Sequence Control framework will be used to define the set of loops to be
aligned, and the order of their execution.

The 192-beam NIF design contains roughly 4,000 alignment loops. The current control system design
calls for four AA FEPs to execute those 4,000 loops in 30 minutes. Serial execution on each of the four
FEPs will not meet the requirement. However, the execution time of a given loop is dominated by the
time required to complete a motor correction command. Multi-tasking software will allow a single
computer to perform automatic alignment of multiple beams in parallel to achieve the 30 minute goal.
Although we now have only a single beamline to align, software could be written to simulate parallel
alignment of multiple beams.

Finally, since this prototype automatic alignment system was constructed, the NIF design for video
distribution has changed considerably. In place of an analog switching system that delivers analog images
to be digitized by the AA FEPs, the current design calls for dedicated Video FEPs to acquire and digitize
images and pass the digital images over the computer network. In addition, cost-performance analysis of
computer workstations versus specialized image processing hardware suggests that it is more cost-effective
to perform image processing with software on a fast workstation than to use specialized hardware. As a
result, the next-generation AA FEP prototype is likely to be a standard multiprocessor server, rather than
the current VMEbus system with image digitization and processing hardware.

6. SUMMARY
Prototyping continues to be an important component of the development strategy for the NIF control
system. The automatic alignment system prototype has provided valuable initial experience with and
validation of the tools that will form the basis of the control system: CORBA and OOP. The prototype
has been integrated with a model NIF beamline to demonstrate the basic concepts of NIF automatic
alignment. For those reasons, we consider the prototyping effort to have been a success to this point. In
keeping with the iterative strategy of software development being used for the NIF, the prototype system
will change to reflect changed system specifications and will grow to perform more complex tasks and to
more completely represent the NIF software architecture.

7. DISCLAIMER
This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48.

8. REFERENCES
1 Grady Booch, Object Oriented Analysis and Design with Applications, p. 24, The Benjamin/Cummings
Publishing Company, Inc., Redwood City, CA, 1994
2 J. G. P. Barnes, Programming in Ada Plus an Overview of Ada 9X, p. 6, Addison-Wesley Publishing
Company Inc., 1994
3 Shirley, J. et al, Guide to Writing DCE Applications, 2nd Edition, O’Reilly & Associates, Inc., 1994
4 Common Object Request Broker: Architecture and Specification, Object Management Group and
X/Open, OMG.91.12.1, 1991
5 User’s Manual, Intelligent Motor Controllers, VMEX Family, Oregon Micro Systems, Inc., Beaverton,
Oregon, 1991
6 TSVME411User’s Manual, Themis Computer, Gieres, France
7 MaxVideo 200 Hardware Reference Manual, Datacube, Inc., Danvers, Massachusetts, 1993
8 APA512+ Hardware Manual, Atlantek Microsystems Pty. Ltd., Adelaide, SA, 5095, Australia, 1993
9 Orbix 1.3 Programmer’s Guide, Iona Technologies Ltd., Dublin, Ireland, 1995

